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Constructing a New-style Conceptual Model of
Brain Data for Systematic Brain Informatics

Ning Zhong and Jianhui Chen

Abstract—The development of brain science has led to a vast increase of brain data. To meet requirements of a systematic
methodology of Brain Informatics (BI), this paper proposes a new conceptual model of brain data, namely Data-Brain, which explicitly
represents various relationships among multiple human brain data sources, with respect to all major aspects and capabilities of human
information processing systems (HIPS). A multi-dimension framework and a BI methodology based ontological modeling approach
have been developed to implement a Data-Brain. The Data-Brain, Data-Brain based BI provenances, and heterogeneous brain data
can be used to construct a Data-Brain based brain data center which provides a global framework to integrate data, information and
knowledge coming from the whole research process for systematic BI study. Such a Data-Brain modeling approach represents a
radically new way for domain-driven conceptual modeling of brain data, which models a whole process of systematically investigating
human information processing mechanisms.

Index Terms—Data-Brain, Brain Informatics, domain-driven conceptual modeling, ontologies, provenance.
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1 INTRODUCTION

THE capabilities of human intelligence can be broadly
divided into two main aspects: perception and

thinking. The latter is involved with multiple “higher”
cognitive functions, such as reasoning, problem-solving,
decision-making, learning, and so on. In order to un-
derstand “intelligence” of human information processing
systems (HIPS) in depth, Brain Informatics (BI) focuses
on thinking centric cognitive functions [55], [56]. Aiming
at the characteristics of thinking centric investigations,
BI emphasizes on a systematic approach to investigate
human information processing mechanisms guided by a
systematic BI methodology.

However, such a systematic BI study cannot be re-
alized only depending on the traditional expert-driven
approach. A powerful brain data center needs to be
developed on the Wisdom Web and knowledge grids
as the global research platform to support the whole
systematic BI research process [51], [52], [54]. This brain
data center is not only a brain database. In fact, it
should be a data cycle system which integrates various
information systems to transform the systematic research
process of BI, i.e., BI “data, information, knowledge”
cycle (BI data cycle for short), from the expert-driven and
state-of-the-art process to the normative and propagable
one [58]. For constructing such a data cycle system,
the core issue is to develop an effective mechanism to
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integrate valuable data, information and knowledge for
various data requests which are coming from different
aspects of a systematic BI study.

In this paper we propose a new conceptual model
of brain data called Data-Brain as a global mechanism
for the integration of data, information and knowledge
in the whole process of systematic BI study. A multi-
dimension framework and a BI methodology based onto-
logical modeling approach are developed to implement
the Data-Brain. Such a Data-Brain modeling methodol-
ogy represents a radically new way for domain-driven
conceptual modeling of brain data, which models a
whole process of systematically investigating human in-
formation processing mechanisms in BI. The remainder
of this paper is organized as follows. Section 2 discusses
background and related work. Section 3 gives the def-
inition of Data-Brain and describes how to construct a
Data-Brain. Based on the preparations, Section 4 presents
the Brain Informatics methodology based modeling ap-
proach, and Section 5 provides two realistic examples to
evaluate the modeling approach and reports the experi-
mental results. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Brain Informatics and Its Methodology
Brain Informatics (BI) is a new interdisciplinary field
to study human information processing mechanism sys-
tematically from both macro and micro points of view by
cooperatively using experimental/computational cogni-
tive neuroscience and Web Intelligence (WI) centric ad-
vanced information technologies [49], [50]. It can be
regarded as brain sciences in the WI centric IT age [53].

As stated above, the capabilities of human intelligence
can be broadly divided into two main aspects: perception
and thinking. Our BI studies focus on thinking centric
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investigations. Comparing with the perception oriented
investigations, thinking centric ones are more complex
and involved in multiple inter-related cognitive func-
tions with respect to activated brain areas and their
neurobiological processes of spatio-temporal features for
a given task. The complexity of thinking centric investi-
gations decides that Brain Informatics is “systematic”,
i.e., BI adopts a systematic methodology to investi-
gate human information processing mechanisms, which
includes four core issues: systematic investigation of
human thinking centric mechanisms, systematic design
of cognitive experiments, systematic human brain data
management, and systematic human brain data analysis
and simulation [57].

Guided by such a BI methodology, the whole research
process of BI can be regarded as a BI data cycle which is
implemented by measuring, collecting, modeling, trans-
forming, managing, mining, interpreting, and explaining
multiple forms of brain data obtained from various cog-
nitive experiments by using powerful equipments, such
as fMRI (functional magnetic resonance imaging) and
EEG (electroencephalogram). Such a systematic BI study
needs the supporting of various information technolo-
gies. Furthermore, in order to make sure the consistency
and persistence of “data, information, knowledge” cycle,
these information technologies need to be realized as
various information systems and integrated into a brain
data center as the global BI data cycle system of BI
community. Regarding the data centric BI study, this
integration should be based on the different forms of
data in the BI data cycle, including raw brain data, data
related information, extracted data features, found do-
main knowledge related to human intelligence, etc. Thus,
the core issue of BI data cycle system is how to integrate
valuable data, information and knowledge in the whole
research process of BI for various data requests coming
from information systems which provide different types
of research supporting functions for different aspects of
a systematic BI study.

2.2 Conceptual Modeling of Brain Data for System-
atic Brain Informatics
Conceptual modeling of data “transforms” things from
real world into “data” world. It is a key issue in the
developing of information systems. 1 In the database
design, conceptual data modeling represents data enti-
ties and relationships among them for the data organi-
zation, storage and query. In the metadata developing,
conceptual schema design of metadata represents data
knowledge for the collection, organization and query
of data information. In data related ontology model-
ing, domain ontologies model and integrate the domain
knowledge about data for knowledge driven data uti-
lizations. In general, conceptual modeling of data is an

1. In our studies, the conceptual modeling of data does not limit
to conceptual data modeling in the database domain. Conceptual
schema design of metadata and data related ontology modeling are
also regarded as the conceptual modeling of data.

effective mechanism to integrate data, information and
knowledge for various data utilizations coming from
information systems. It provides a practical approach to
resolve the above core issue of BI data cycle system.

However, as a core of BI data cycle system, the
conceptual model of brain data should be a new-style
conceptual model of data which is oriented to not a or
several special data applications in BI study but various
data requests coming from information systems. In order
to realize systematic BI study, all of information systems
in BI study should be oriented to the implementation
of systematic BI methodology. Thus, the corresponding
data requests are coming from different aspects of a
systematic BI study and can be generalized based on the
above four core issues of BI methodology. This means
that, for systematic Brain Informatics, the conceptual
model of brain data should be able to integrate the
valuable data, information and knowledge in the whole
research process of BI for various data requests which are
coming from different aspects of a systematic BI study:

• Systematic investigation of human thinking cen-
tric mechanisms. For understanding the principles
and mechanisms of HIPS in depth, human think-
ing centric cognitive functions, such as reasoning,
problem-solving, decision-making and learning, and
their relationships need to be investigated system-
atically. In order to support such a systematic in-
vestigation, various data requests, such as “get all
of activations of sentential induction tasks, as well as
the corresponding experimental groups and experimental
tasks, which are located in the frontal lobe and whose
sizes are larger than 100 voxels” and “get all of similar
data features which are extracted from the data of both
induction and computation”, are often given for study-
ing not only a specific cognitive function but also
multiple kinds of cognitive functions systematically.

• Systematic design of cognitive experiments. Be-
cause of the complexity of human thinking centric
cognitive functions, each investigation of cognitive
functions requires not only single data source ob-
tained from a single measuring method and cog-
nitive task, but also multiple data sources from
various practical measuring methods, such as com-
bining fMRI and EEG/ERP, and a series of cognitive
experiments/tasks. In order to support such sys-
tematic experimental designs, various data requests,
such as “get all of experiment disposals about the re-
versed triangle inductive task” and “get all of experiment
disposals about human induction”, are often requested
for designing not only a specific experimental dis-
posal but also a set of experimental disposals sys-
tematically.

• Systematic human brain data management. Aim-
ing at the systematic investigation and experimen-
tal design, the distributed and heterogeneous brain
data need to be effectively stored, organized, main-
tained and updated for realizing a radically new
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ways of sharing data/knowledge and high speed,
distributed, large-scale, multi-aspect analysis and
computation on the Wisdom Web and knowledge
grids. In order to support such a systematic data
management, various data requests, such as “get
all of experimental data with the Object-Attribute-Value
Mode” and “get all of data resources coming from the
ERP experiments of reversed triangle inductive task”,
are often given for managing not only a specific
kind of brain data but also multiple kinds of brain
data coming from a group of experiments or data
processing systematically.

• Systematic human brain data analysis and simu-
lation. The agent-enriched, multi-aspect brain data
analysis is implemented to combine various human
brain data and data analysis/simulation methods
for understanding complex brain data in depth, in
order to uncover the information processing courses
of thinking centric cognitive functions with respect
to their neural structures and mechanisms. In order
to support such a systematic human brain data
analysis and simulation, various data requests, such
as “get the analytical process and related instances of
SPM based brain activation finding” and “get all of
analytical methods which can find activations from fMRI
data”, are often requested for utilizing not only a
specific analytical method but also multiple kinds
of analytical methods.

2.3 Existing Studies on Conceptual Modeling of
Brain Data

In brain science, the existing studies on conceptual mod-
eling of brain data can be divided into the following
three types:

• The conceptual schema design of brain database.
When the main functions of brain database centric
systems are to support transaction operations, such
as simple query, addition, deletion, brain databases
are oriented to the storage of brain data and data
related information. The corresponding conceptual
modeling of brain data focuses on intuitional de-
scriptions of data entities and a certain aspect of re-
lationships among them, in order to effectively store
brain data and related information for those trans-
action operations. The created conceptual models
of brain data are just conceptual schemata of brain
databases, such as the conceptual schema of neu-
roimage database [44] and the conceptual schema
of EEG database [23]. The main modeling tools
are some graphical conceptual data modeling lan-
guages, such as Entity-Relationship (ER) model [5].

• The conceptual schema design of metadata. When
the main functions of systems are to publish brain
data on the Web, brain databases are oriented to
the storage of origins about brain data. The corre-
sponding conceptual modeling of brain data focuses
on intuitional descriptions about origins of brain

data, involving with various experiments and data
processing, in order to integrate related informa-
tion for describing the published data. The created
conceptual models are just conceptual schemata of
metadata or provenances [40], [26], such as the
ontological metadata schemata of neuroimages [18],
[45]. The main modeling tools are some graphical
languages or signs.

• The domain ontology modeling. When the main
functions of systems are to share data on the Web,
brain databases need to include various formal
domain knowledge for data/metadata annotations.
The corresponding conceptual modeling of brain
data focuses on formal descriptions of data related
domain knowledge. The created conceptual models
of brain data are just various brain data related
domain ontologies, such as NEMO (NeuroElectro-
Magnetic Ontologies) [11] and OntoNeuroBase [41].
The main modeling tools are the formal ontologi-
cal languages, such as OWL (Web Ontology Lan-
guage) [29].

These existing studies show that, aiming at different
functions of information systems, the conceptual mod-
eling of brain data often adopts different modeling ap-
proaches and tools to describe brain data from different
aspects and granularities.

Although the above database schemata, metadata
schemata and ontologies provide various conceptual
models of brain data, which can model a kind of data as
an entity, a concept or a class, respectively, all of them
only describe various brain data and their relationships
from a specific aspect and granularity at the conceptual
level. Obviously, these existing conceptual models of
brain data cannot integrate the valuable data, informa-
tion and knowledge in the whole research process of
BI to effectively respond the above four types of data
requests. Thus, for constructing the data cycle system, BI
needs a domain-driven conceptual model of brain data,
i.e., the Data-Brain, which models the whole lifecycle
of brain data in the BI “data, information, knowledge”
cycle.

3 DATA-BRAIN AND ITS MODELING

3.1 What Is a Data-Brain?
The Data-Brain is a domain-driven conceptual model of
brain data, which represents multi-aspect relationships
among multiple human brain data sources, with respect
to all major aspects and capabilities of HIPS, for system-
atic investigation and understanding of human intelli-
gence [6], [7]. It is neither a digital brain which models
brain structures by digital and visual technologies nor
a logical brain which models brain functions for the
simulation and the development of new IT technolo-
gies. For supporting the systematic investigation and
understanding of human intelligence in BI, the Data-
Brain models heterogeneous brain data and multi-aspect
relationships among them at the conceptual level to
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integrate key data, information and knowledge for the
constructions of various research supporting systems
which can form a BI data cycle system to carry out the
systematic BI methodology and support the whole BI
research processes.

Constructing such a Data-Brain is attributed to the
characteristics of BI. In order to develop a BI data cycle
for systematic BI study, BI needs a Data-Brain to inte-
grate key data, information and knowledge for various
data requests of a systematic BI study. Based on this way,
it provides a long-term, holistic vision to uncover the
principles and mechanisms of underlying HIPS. On the
other hand, BI methodology supports such a Data-Brain
construction. As a BI oriented conceptual model of brain
data, the Data-Brain can adopt a BI methodology based
modeling approach. In other words, the Data-Brain goes
beyond specificity of a certain application and straightly
models the four aspects of systematic BI methodology
as stated in Section 2. This is just so-called “domain-
driven”.

Based on the systematic BI methodology, we design
a multi-view and multi-dimension framework for the
Data-Brain. For supporting systematic investigation and
understanding of human intelligence, the Data-Brain
includes multiple conceptual views which represent sys-
tematic BI investigations and their inter-relationships
from different viewpoints based on functional relation-
ships among related human cognitive functions. These
conceptual views provide a series of long-term and
holistic visions of BI thinking centric investigation. They
can be regarded as cognitive/brain scientists’ interfaces
to facilitate their own research activities and cooperation
with different focusing and research issues. Figure 1
gives an abstract representation of the conceptual view,
which illustrates reasoning centric BI investigations and
their inter-relationships based on functional relation-
ships among related human cognitive functions. The
core issue is to investigate human deduction, induction
and abduction related reasoning mechanisms, as well
as including common-sense reasoning, as shown in the
central of Fig. 1. Heuristic search, attention, emotion
and memory are some component functions to imple-
ment human reasoning, as well as granularity, autonomy,
stability and uncertainty are some interesting charac-
teristics, which need to be investigated with respect
to human thinking related cognitive functions, as illus-
trated in the middle circle of this figure. Furthermore,
decision-making, problem-solving, planning, computa-
tion, language, learning, discovery and creativity are the
major human thinking related cognitive functions, which
will be studied systematically, as illustrated outside the
middle circle of this figure.

As stated in previous sections, the thinking centric
investigations of BI are implemented by a systematic BI
methodology including four core issues. Accordingly, the
conceptual view of Data-Brain, which represents various
thinking centric investigation of BI, is also transformed
into its own structural view with four dimensions,

Problem-Solving

Learning

Reasoning

Decision-Making Planning

Creativity

deduction

induction abduction

autonomy

granularityemotion

uncertainty

stability

search

Discovery Language

memory

attention

(Commonsense)

Computation

Fig. 1. A “Reasoning” centric conceptual view of the Data-
Brain

1

Function Dimension

Analysis DimensionExperiment Dimension

Data Dimension

has-experimental-purpose

has-result-data has-result-data

has-origin-data

Conceptual View Structural ViewConceptual View Structural View

Fig. 2. A multi-dimension framework of the Data-Brain

namely function dimension, data dimension, experiment
dimension, and analysis dimension, which are connected
to each other and corresponding to the four issue of
BI methodology, respectively. Figure 2 illustrates such
a transformation, in which we only give two conceptual
views, the reasoning centric view and the computation
centric view, because of the limitation of space. We will
describe an ontological modeling approach for dimen-
sion constructions in the next subsection, and present the
technical details for constructing the four dimensions of
Data-Brain and their relationships, as well as for extract-
ing a conceptual view from the function dimension in
Section 4.

3.2 How to Construct a Data-Brain

Generally speaking, conceptual modeling approaches
can be divided into two types: conceptual data mod-
eling and ontology modeling. Although both ontologies
and data models are partial accounts of conceptualiza-
tions [43] and share many common features [21], they do
have some differences. Fonseca et al. defined two criteria
to differentiate ontologies from conceptual data models:
the objectives of modeling and objects to model [16].

As stated in the previous section, the Data-Brain in-
cludes four dimensions with respect to the four aspects
of systematic BI methodology, which can be regarded as
a machine-readable embodiment of BI methodology. Its
objective of modeling is not a specific implementation
and its objects represent generic things in a domain. Ob-
viously, it is a good way to use an ontological modeling
approach for constructing the Data-Brain.

At present, researches on ontology construction have
acquired a large amount of productions, which are
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involved with many ontology engineering methodolo-
gies [42], [14] and ontology learning technologies [1],
[2], [47]. The former focuses on developing a standard
knowledge acquisition process to guide the manual pro-
cess of ontology modeling. The latter applies itself to
change the ontology modeling from the manual process
to the semiautomatic process by various technologies,
including machine learning, statistics, etc. Because the
existing technologies on ontology learning cannot realize
an absolutely automatic process to construct ontologies,
The practical approach for Data-Brain modeling is a
manual knowledge acquisition process guided by special
ontology engineering methodologies, in which some on-
tology learning technologies can be adopted for special
sub-processes of knowledge acquisition.

However, though there are many mature ontology en-
gineering methodologies, the Data-Brain modeling still
needs to be studied in depth. On the one hand, the multi-
dimension Data-Brain is involved with multi-domain
knowledge. The main purpose of Data-Brain modeling is
not to develop a multi-domain ontology about brain data
but to construct a conceptual model of brain data to in-
tegrate data, information and knowledge for systematic
BI study. Thus, the Data-Brain modeling cannot be real-
ized only by adopting the existing ontology engineering
methodologies to collect related domain knowledge from
other domains of brain science. The further studies are
needed to design the knowledge acquisition process of
Data-Brain modeling more detailed based on the rules
and restrictions which are coming from the systematic
BI methodology. On the other hand, based on a large
amount of previous studies, the systematic BI method-
ology has formed and is being perfected constantly. The
study on Data-Brain modeling provides a chance to
embody the BI methodology and develop a BI data cycle
system for the system driven systematic BI study.

Based on the existing ontology engineering method-
ologies and ontology learning technologies, we pro-
pose a Brain Informatics methodology based approach
for Data-Brain modeling, including the following eight
steps:

• terms gathering,
• constructing the function dimension based on sys-

tematic investigation,
• constructing the experiment dimension based on

systematic experimental design,
• constructing the data dimension based on system-

atic data management,
• constructing the analysis dimension based on sys-

tematic data analysis and simulation,
• extracting conceptual views from the function di-

mension,
• constructing relations among dimensions for BI

provenances, and
• the evaluation of Data-Brain and its evolution.

In our recent studies, OWL is used as the modeling
language.

In the above steps, the core one is the dimension

construction, involved with steps 2, 3, 4 and 5. Each
dimension can be regarded as a sub-ontology and is
corresponding to the four issues of BI methodology
stated above, respectively, which can be constructed by
the following four steps:

• defining the domain and scope,
• identifying key concepts and properties,
• defining the concept hierarchy by taxonomic rela-

tions, and
• constructing axioms.
Different from the existing ontology engineering

methodologies which only define the purpose of each
step, this BI methodology based approach is domain-
driven, i.e, the implementation rules in each step of
dimension constructions are explicitly represented ac-
cording to different aspects of BI methodology. The more
descriptions will be given in the next sections.

4 A BRAIN INFORMATICS METHODOLOGY
BASED APPROACH FOR DATA-BRAIN MODEL-
ING

4.1 Terms Gathering
Terms are some important words in domains. They are
candidate concepts or relationships for the ontology
construction. In ontology engineering methodologies,
terms are often acquired by “Brainstorming” [43]. In
order to simplify the Data-Brain modeling and the infor-
mation system integration, our studies adopt ontology
learning technologies to gather terms from our existing
research supporting systems, including a brain database
and an analytical record system. The former stores the
experimental information about brain data and the latter
records the analytical information about brain data. The
gathering process includes the following two steps:

• ontology learning based on conceptual schemata of
databases,

• instance construction based on tuples.
The method stated in [47] is adopted to implement
ontology learning.

In fact, as shown in Fig. 3, simple ontologies can
be constructed by the above steps. However, because
conceptual schemata of databases lack enough semantic
information, the obtained ontologies are too simple and
can only be regarded as the term sets for the following
dimension constructions.

4.2 Constructing the Function Dimension Based on
Systematic Investigation
The function dimension models the systematic inves-
tigation of BI methodology. It describes information
processing courses of human thinking centric cognitive
functions and functional relationships among them at the
conceptual level. As stated above, the thinking centric
cognitive functions are complex and closely related to
each other. Thus, the Data-Brain needs to include a func-
tion dimension for guiding the systematic investigation.
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Fig. 3. A fragment of conceptual schemata of brain
database and the corresponding simple ontology. In this
transformation, the triple relation “adopts” in the ER model
is replaced by a new concept “Experimental-Group”
and three binary relations “has-experimental-task”, “has-
experimental-means” and “performs-experiment” in the
simple ontology.

According to the four steps of dimension constructions
stated in Section 3.2, the process of constructing a func-
tion dimension can be described as follows:

• Defining the domain and scope of the function
dimension. Because the function dimension models
the systematic investigation, the objects of investi-
gation decide the domain and scope of a function
dimension. Its domain is human cognitive functions
and its scope covers human thinking centric cogni-
tive functions and other related cognitive functions,
on which systematic BI investigation focuses.

• Identifying key concepts and properties. The key
concepts in the function dimension for systematic
investigation are with respect to human thinking
centric cognitive functions, such as “Reasoning” and
“Problem-Solving”, and their sub-function concepts,
such as “Deduction” and “Induction”. These key
concepts are described by properties, including data
properties and object properties. Data properties are
used to describe concepts themselves and object
properties are used to describe relations among con-

cepts. In systematic BI investigation, each concept
with respect to a cognitive function represents a
series of study activities. For providing a holistic BI
study view and a comprehensive functional model
of human brain, the function dimension needs to
focus on functional relationships among cognitive
functions. Thus, there is no key data property
in the function dimension. Only the key object
property “has-functional-relationship-with”, which
describes functional relationships among cognitive
functions, is included in the function dimension. It
includes various sub-properties, such as “includes-
in-function” and “related-to-in-function”, which are
used to describe different types of functional rela-
tionships.

• Defining the concept hierarchy. Since no standard
taxonomy of human cognitive functions, researchers
often classify cognitive functions according to
their own study viewpoints, such as LRMB
model [46]. Because the systematic investigation of
BI methodology is a thinking centric one, we define
the concept hierarchy of a function dimension as
follows. Firstly, the concepts with respect to human
cognitive functions can be classified into two
classes, “Perception-Centric-Cognitive-Functions”
and “Thinking-Centric-Cognitive-Functions”. The
former includes the concepts with respect to
perception oriented cognitive functions, such as
“Vision” and “Hearing”. The latter includes the
concepts with respect to thinking centric cognitive
functions on which BI focuses, such as “Reasoning”.
Secondly, all of cognitive functions are specialized
into more characterized sub-classes. For example,
the concept “Reasoning” can be specialized into
multiple sub-concepts, such as “Induction” and
“Deduction”.

• Constructing axioms. Axioms are formal assertions
that model sentences that are always true. They
provide a way of representing more information
about concepts, such as constraining on their own
internal structure and mutual relationships. The
primary axioms in the Data-Brain are restriction
axioms, including value constraints and cardinality
constraints. Thus, constructing axioms in the Data-
Brain can be specialized as that related concepts are
described by data properties and object properties
with constraints. Because of lacking data properties,
constructing axioms in the function dimension is
just to use the key object property “has-functional-
relationship-with” and its sub-properties to describe
concepts with respect to cognitive functions in a
function dimension with constraints. For example,
the object property “includes-in-function” can be
used to describe the concept “Induction” as follow:

Induction ⊆ Restriction(∃ includes-in-function
Attention).

This means that “Induction” includes “Attention” as
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Perception-Centric-Cognitive-FunctionThinking-Centric-Cognitive-Function

Attention MemoryProblem-Solving Reasoning

InductionDeduction

Numeric-Induction

includes-in-function

Fig. 4. A fragment of the function dimension. A solid line
between two concepts represents a direct specialization
relation. An arrow line between two concepts represents
a non-taxonomic relation.

a sub-component, but not only includes “Attention”.
Based on the above four steps, an ontological func-

tion dimension can be constructed as shown in Fig. 4.
The function dimension provides a holistic, conceptual
functional model of human brain for systematic investi-
gation. It also provides a machine-readable knowledge-
base for constructing various conceptual views.

4.3 Constructing the Experiment Dimension Based
on Systematic Experimental Design
The experiment dimension models the systematic exper-
imental design of BI methodology. It describes charac-
teristics of various experimentation plans, their classi-
fication and inter-relationships at the conceptual level.
Systematic experimental design is an important issue
of BI methodology. For uncovering the principles and
mechanisms of HIPS, BI researchers need to design a
series of cognitive experiments for obtaining high quality
of experimental data, which represent different aspects
of various thinking centric cognitive functions, based
on a systematic methodology of cognitive experimen-
tal design. Thus, the Data-Brain needs to include an
experiment dimension for guiding such a systematic
experimental design.

The process of constructing an experiment dimension
can be described as follows:

• Defining the domain and scope of the experi-
ment dimension. Because the experiment dimen-
sion models the systematic experimental design,
the methodology of systematic experimental design
decides the domain and scope of an experiment di-
mension. Its domain is cognitive experiments about
human brain and its scope covers different aspects
of experiments including experimental tasks, mea-
suring instruments, etc.

• Identifying key concepts and properties. The
systematic experimental design of BI methodol-
ogy needs to synthetically use various experi-
mental tasks, measuring instruments, and sub-
jects. Thus, besides the concept “Experiment-
Group”, the key concepts in the experiment di-
mension are various experiment related concepts,
including experiment concepts, such as “ERP-
Experiment” and “fMRI-Experiment”, experimen-

tal task concepts, such as “Reversed-Triangle-
Inductive-Task” and “Sentential-Inductive-Strength-
Judgment-Task”, measuring instrument concepts,
such as “EEG” and “MRI”, and subject concepts,
such as “MCI-Patient” and “College-Student”. For
describing systematic BI cognitive experiments in
detail, the properties describing the above experi-
ment related concepts are the key data properties in
the experiment dimension, including the properties
describing subjects, such as “age” and “name”, the
properties describing experimental parameters, such
as “ TR” and “TE”, etc. For describing systematic
BI cognitive experiment in the round, the key ob-
ject properties in the experiment dimension are the
properties which describe the relations between the
concept “Experiment-Group” and other experiment
related concepts, such as the object property “has-
experimental-task”.

• Defining the concept hierarchy. The experiment
dimension mainly includes four types of concepts,
namely, experiment concepts, experimental task
concepts, measuring instrument concepts, and sub-
ject concepts, which have the concept hierarchies
of themselves. These four types of concepts form
four sub-dimensions in the experiment dimension.
For example, the concept “Experimental-Task” can
be specialized into more characterized sub-classes,
“Auditory-Task” and “Visual-Task”, based on the re-
ceiving mode of information firstly. Secondly, based
on the appearance format of tasks, these two sub-
classes can be further specialized into sub-classes,
such as “Figural-Task” and “Numerical-Task”.

• Constructing axioms. Constructing axioms in an
experiment dimension is just to describe the concept
“Experiment-Group” and other experiment related
concepts by data properties and object properties
with constraints. For example, the object property
“has-experimental-task” can be used to describe the
concept “Experiment-Group” as follow:

Experiment-Group
⊆ Restriction(∀has-experimental-task

Experimental-Task)
⊆ Restriction(has-experimental-task ≥ 1).

This means that each “Experiment-Group” has one
or more “Experimental-Task”s.

Based on the above four steps, an ontological experi-
ment dimension can be constructed as shown in Fig. 5.
The experiment dimension provides a holistic knowl-
edge framework to integrate multi-aspect experiment
related knowledge for describing the systematic exper-
imental design of BI methodology. By relations with
the function and data dimensions, it explicitly describes
various relationships among various data sources. Using
the experiment dimension, cognitive experiments related
information can be stamped on each dataset for support-
ing the systematic data analysis and simulation.
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Fig. 5. A fragment of the experiment dimension.

4.4 Constructing the Data Dimension Based on Sys-
tematic Data Management

The data dimension models the systematic brain data
management of BI methodology. It describes multiple
views, schemata, and organizations of human brain data
with multiple data sources, multiple data forms, multiple
levels of data granularity at the conceptual level. Con-
ceptual modeling heterogeneous brain data using the
data dimension is the key to realize systematic human
brain data management of BI methodology.

The process of constructing a data dimension can be
described as follows:

• Defining the domain and scope of the data di-
mension. Because the data dimension models the
systematic brain data management, the objects of
systematic data management decide the domain and
scope of a data dimension. Its domain is brain data
and its scope covers various original data, deriving
data and data features (analyzed results), which
need to be stored into the brain database.

• Identifying key concepts and properties. The
systematic data management needs to store var-
ious brain data, including original data, de-
riving data and data features. Thus, the key
concepts in the data dimension are various
BI related experimental data concepts, such as
“BOLD-Image-Sequence”, deriving data concepts,
such as “Smoothed-ERP-Data-with-Channel-Time-
Amplitude-Mode”, and data feature concepts, such
as “ERP-Component” and “Activation”. In the sys-
tematic data management, these data concepts are
used to represent different kinds of data which need
to be stored into a brain data center as database
records or data files. Thus, the key data properties
in the data dimension are the storage fields of
structured data, such as “electrode-site” and “latent-
period”, and description fields of unstructured data,
such as “file-size” and “postfix-name”. The key
object properties in the data dimension are the
properties which are used to describe structural re-
lationships among data, such as the object property
“has-bold-data”.

• Defining the concept hierarchy. At present, there
is not a standard taxonomy of brain data. Thus,
we classify these data concepts based on our re-
quirements. The data dimension is oriented to the

BI-Data

Structured-DataUnstructured-Data

Unstructured
-Data-Feature

Original-fMRI-DataOriginal-ERP-Data

fMRI-Dataset

Unstructured-
Original-Data

Unstructured-
Deriving-Data

Structured-
Deriving-Data

Structured-
Data-Featuree

BOLD-Image-Sequencehas-bold-data

Structured-
Original-Data

Fig. 6. A fragment of the data dimension.

systematic data management whose purposes are
to effectively store heterogeneous brain data and
support systematic data analysis. Based on these
purposes, we define the concept hierarchy of a
data dimension as follows. Firstly, according to
different storage modes, data concepts are clas-
sified into two classes, “Unstructured-Data” and
“Structured-Data”; Secondly, according to differ-
ent functions in systematic data analysis, each of
the above two classes is specialized into three
sub-classes, “Original-Data”, “Deriving-Data” and
“Data-Feature”, respectively, which include differ-
ent specific data concepts.

• Constructing axioms. Similar to the function dimen-
sion, constructing axiom in a data dimension can
be specialized as that related concepts are described
by data properties and object properties with con-
straints. For example, the object property “has-bold-
data” can be used to describe the concept “fMRI-
Dataset” as follow:

fMRI-DataSet ⊆ Restriction(∀has-bold-data
BOLD-Image-Sequence).

This means that “BOLD-Image-Sequence” is the
only bold data type in “fMRI-DataSet”.

Based on the above four steps, an ontological data di-
mension can be constructed as shown in Fig. 6. The data
dimension provides a multi-level data representation by
modeling, abstracting and transforming for systematic
data management. It supports the realization of a grid-
based, analysis and simulation oriented, dynamic, spa-
tial and multimedia database for storing and managing
the heterogeneous brain data efficiently and effectively.

4.5 Constructing the Analysis Dimension Based on
Systematic Data Analysis and Simulation

The analysis dimension models the systematic data anal-
ysis and simulation of BI methodology. It describes char-
acteristics of various analysis and simulation methods,
as well as their relationships with multiple human brain
data for multi-aspect analysis and simulation. Agent-
enriched data mining for multi-aspect data analysis is
an important issue of BI methodology because the brain
is too complex for a single data mining algorithm to
analyze all the available data. Thus, the Data-Brain needs
to include an analysis dimension for guiding the agent-
enriched computing.
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The process of constructing an analysis dimension can
be described as follows:

• Defining the domain and scope of the analysis
dimension. Because the analysis dimension models
the systematic data analysis and simulation, the
methodology of systematic data analysis and simu-
lation decides the domain and scope of an analysis
dimension. Its domain is brain data analysis and its
scope covers different aspects of brain data analysis
including analytic task, software, etc.

• Identifying key concepts and properties. The
multi-aspect data analysis is a practical approach
for realizing the systematic data analysis and simu-
lation of BI methodology. It adopts various analysis
and simulation methods on multiple human brain
data for understanding data in depth. Thus, the key
concepts in the analysis dimension are various brain
data analysis related concepts, including analytic
process concepts, such as “Finding-Peculiarities-in-
Amplitude-by-POM”, analytic task concepts, such
as “Data-Preprocessing” and “Feature-Extraction”,
software concepts, such as “Brain-Vision-Analyzer”
and “C-Program-of-POM”, and algorithm concepts,
such as “POM” (Peculiarity Oriented Mining) and
“PVOM” (Peculiarity Vector Oriented Mining). An
agent-enriched mining process is necessary for im-
plementing the large-scale multi-aspect data anal-
ysis. Thus, for guiding the agent computing, the
key data properties in the analysis dimension
are various parameters of analysis methods, such
as “threshold-value-of-POM”. Furthermore, for de-
scribing systematic BI data analysis in the round, the
key object properties in the analysis dimension are
the properties which describe the relations between
the concept “Analytic-Process” and other brain data
analysis related concepts, such as the object property
“performs-task”.

• Defining the concept hierarchy. The analysis di-
mension mainly includes four types of concepts,
namely, analytic process concepts, analytic task
concepts, software concepts, and algorithm con-
cepts, which have the concept hierarchies of them-
selves. These four types of concepts form four sub-
dimensions in the analysis dimension. For exam-
ple, the concept “Software” can be specialized into
more characterized sub-classes, “Algorithm-Tool”
and “Multi-Function Software”, based on their func-
tions.

• Constructing axioms. Similar to the experiment di-
mension, constructing axioms in an analysis dimen-
sion is just to describe brain data analysis related
concepts by data properties and object properties
with constraints. For example, the object property
“uses” can be used to describe the concept “Finding-
Peculiarities-in-Amplitude-by-POM” as follow:

Finding-Peculiarities-in-Amplitude-by-POM
⊆ Restriction(∃ uses C-Program-of-POM)

AlgorithmAnalytic Task Software

Algorithm Tool

Analytic Process

ERP Data Analysis

Data
Preprocessing

POM

Feature Extraction
PVOM

Multi-Function
Software

C Program
of POM

C Program
of PVOM

Brain Vision 
Analyzer

SPM

fMRI Data Analysis

Empty Process

Fining Peculiarities in 
Amplitude by POM

Temporal Feature 
Extraction

Identifying Peculiarities 
in Amplitude

performs-task
   uses implements-algorithm

Fig. 7. A fragment of the analysis dimension.

This means that the software “C-Program-of-
POM” is used in the analytic process “Finding-
Peculiarities-in-Amplitude-by-POM”.

Based on the above four steps, an ontological anal-
ysis dimension can be constructed as shown in Fig. 7.
The analysis dimension provides a holistic knowledge
framework to integrate the knowledge about multi-
aspect brain data analysis for describing the systematic
data analysis and simulation of BI methodology. Based
on the analysis dimension corresponding to the data
and experiment dimensions, various methods for data
processing, mining, reasoning, and simulation can be de-
ployed as agents on a multi-phase process for perform-
ing multi-aspect analysis as well as multi-level concep-
tual abstraction and learning, which aims at discovering
useful knowledge to understand human intelligence in
depth [53].

4.6 Extracting Conceptual Views from the Function
Dimension
In this section, we present a traversal view based method
for conceptual view extraction of a Data-Brain. As de-
scribed in previous sections, the Data-Brain includes
various conceptual views which can be extracted from
the function dimension of a Data-Brain. Since we use
ontologies to model the Data-Brain, its conceptual views
are just the traversal views [35] of the function dimension
and can be defined based on the definition of a traversal
view. Firstly, we give some related definitions:

Definition 1: A view core, denoted by Core, is a think-
ing centric cognitive function concept in the function
dimension. As the core of a conceptual view, it is cor-
responding to a BI study issue and represents all the
study activities of this issue.

For example, in the reasoning centric conceptual view
shown in Fig. 1, the view core is the “Reasoning”, i.e.,
Core=Reasoning.

Definition 2: A traversal directive for the source ontol-
ogy O, denoted by TD, is a pair:

< Cst, RT >, (1)

where Cst is a concept in the source ontology O from
which a view is extracted, and represents the starter
concept of the traversal; RT =< R, n > is a relation
directive, where R is a relation in O and n is a non-
negative integer or infinity which specifies the depth of
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the traversal along the relationship R. If n = ∞, then the
traversal includes a transitive closure for R starting with
Cst.

Definition 3: A traversal directive result (the result of
applying directive TD to O), denoted by TD(O), is a
set of concepts from the source ontology O such that:

1) TD =< Cst, RT >;
2) RT =< R, n >, n > 0. If Cst is a concept in the

starts of the relation R, and a concept C ∈ O is the
corresponding end of the relation R, then C is in
TD(O);

3) RTnext =< R, n− 1 > is a relation directive. If n =
∞, then n − 1 = ∞. For each concept F that was
added to TD(O) in step 2, the traversal directive
result TDF (O) for a traversal directive TDF =<
F, RTnext > is in TD(O).

No other concepts are in TD(O).
For example, if the source ontology O is the function

dimension FD shown in Fig. 4, the traversal directive
TD =< Cst, < R, n >>=< Induction, < includes-in-
function, 1 >> is a path from the concept “Induction”
to the concept “Attention” in the FD, where the Cst =
Induction is the start point of path; R = includes-
in-function is the edge type of path; n = 1 is the
length of path. The corresponding traversal directive result
TD(O) =< Induction, < includes-in-function, 1 >>
(FD) = {Induction, Attention} is a concept set which
includes all of concepts in the path represented by the
TD.

Based on the above definitions, a conceptual view of
the Data-Brain can be defined as follows:

Definition 4: A conceptual view, denoted by CV , is a
five-tuple:

(Core, CF, CFIC, RF, R), (2)

where
• CF =< Core, < parentClassOf,∞ >> (FD) is a

specialization of TD(O) and represents the concept
set of core cognitive functions in a conceptual view,
where “parentClassOf” is the inverse relation of
the relation “subClassOf”, and FD is the function
dimension of a Data-Brain;

• CFIC =< Core, < includes-in-function,∞ >>
(FD) is a specialization of TD(O) and repre-
sents the concept set of component cognitive func-
tions and interesting characteristics in a conceptual
view, where “includes-in-function” is a relation in
the function dimension and used to describe the
functional part-whole relationship among cognitive
functions;

• RF =< Core, < related-to-in-function,∞ >>
(FD) is a specialization of TD(O) and represents
the concept set of related cognitive functions in
a conceptual view, where “related-to-in-function”
is a relation in the function dimension, which de-
scribes the functional pertinence among cognitive
functions;

• R = {parentClassOf, includes-in-function, related-
to-in-function} is a set of relations which are used
to construct the conceptual view.

For example, the reasoning centric conceptual view
as shown in Fig. 1 can be defined as CV =
(Core, CF, CFIC, RF, R), where Core = Reasoning,
CF =< Core, < parentClassOf,∞ >> (FD) =
{deduction, induction, abduction}, CFIC =< Core, <
includes-in-function,∞ > (FD) = {emotion, memory,
granularity, search, autonomy, attention, stability,
uncertainty}, RF =< Core, < related-to-in-function,
∞ >> (FD) = {Problem − Solving, P lanning,
Computation, Language, Creativity, Discovery,
Learning, Decision − Making}, R = {parentClassOf,
includes-in-function, related-to-in-function}.

According to the above definitions, the algorithm for
extracting a conceptual view from an OWL-DL based
Data-Brain is shown in Algorithm 1. In Algorithm 1,
the input parameters are the view core Core and the
function dimension FD; the output is the Core centric
conceptual view CV ; the function TDR shown in Al-
gorithm 2 is used to get the traversal directive result.
Furthermore, in Algorithm 2, the input parameters are
Cst, R, n, and O, which are corresponding to the starter
concept, the name of relation, the depth of the traversal,
and the source ontology in the definition of traversal
directive result, respectively.

Algorithm 1 Conceptual View Extraction
Input: Core and FD.
Output: CV .
1. Initialize empty concept sets CV.CF , CV.CFIC and

CV.RF ;
2. Set CV.Core = Core;
3. Set CV.R = {“parentClassOf”, “includes-in-

function”, “related-to-in-function”};
4. CV.CF = TDR(Core,“parentClassOf”,∞, FD);
5. CV.CFIC = TDR(Core,“includes-in-function”,

∞, FD);
6. CV.RF = TDR(Core,“related-to-in-function”,

∞, FD);
7. return CV

Using the above algorithms, we can choose different
cognitive function concepts as view cores to construct
various conceptual views based on various viewpoints
of BI investigation.

4.7 Constructing Relations among Dimensions for
BI Provenances
Systematic BI study produces various original data, de-
riving data and data features, which include a large
number of unstructured data, especially multimedia
data. For effectively managing, sharing and utilizing
these data, various metadata are needed. Aiming at
different purposes of data sharing and data utiliza-
tion, the metadata need to include different contents.
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Algorithm 2 Getting Traversal Directive Result: TDR
Input: Cst, R, n, and O.
Output: Concepts.
1. Initialize an empty set of result concepts, Concepts;
2. Initialize the depth of the traversal, depth = n;
3. If (depth == 0) then
4. return Concepts;
5. depthnext = depth;
6. If (depthnext <> ∞) then
7. depthnext = depthnext − 1;
8. If (R == “parentClassOf”) then
9. For each class ci in O
10. If (ci subClassOf Cst) then
11. Add ci into Concepts;
12. Add TDR(ci, R, depthnext, O) into Concepts;
13. End If
14. End For
15.Else
16. For each Restriction in Cst

17. If (Restriction is a value constraint and
its property name == R) then

18. ci = Range of Restriction;
19. Add ci into Concepts;
20. Add TDR(ci, R, depthnext, O) into Concepts;
21. End If
22. End For
23.End If
24.return Concepts

The metadata describing the origin and subsequent
processing of biological images is often referred to as
“provenance” [40]. Similarly, we call “BI Provenance”,
including data provenances and analysis provenances, which
is the metadata describing the origin and subsequent
processing of various human brain data in systematic
BI study.

The above four ontological dimensions of a Data-Brain
provide a holistic, data related knowledge framework
for different aspects of a systematic BI study. The four
ontological dimensions and their own domain ontologies
form a knowledge-base for constructing BI provenances.
Thus, these four dimensions can be connected by the
relations among dimensions to provide a holistic con-
ceptual schemata for various BI provenances.

A BI data provenance is a metadata set that describes the
BI data origin by multi-aspect experiment information,
including subjects information, how experimental data
of subjects were collected, what instrument was used,
etc. For providing a general conceptual schemata for
BI data provenances, the function, experiment and data
dimensions are connected by the following two relations:

• has-experimental-purpose. It is between experimen-
tal task concepts in an experiment dimension and
the corresponding cognitive function concepts in a
function dimension, which describes an experimen-
tal purpose.

• has-result-data. It is between experiment concepts
in an experiment dimension and the corresponding
original data concepts in a data dimension, which
describes results of an experiment.

By using the above two relations, cognitive function
related concepts and experiment design related con-
cepts are connected to the corresponding original data
concepts. They form a general conceptual schema for
describing the BI data origin. By extracting specific cog-
nitive function concepts, such as “Numerical-Induction”,
specific experiment related concepts, such as “EEG”,
“College-Student”, and specific data concepts, such as
“BOLD-Image-Sequence”, as well as the corresponding
relations among concepts, various conceptual schemata
of BI data provenances can be obtained from the onto-
logical Data-Brain. We can create instances of concepts
and relations by collecting related information, for con-
structing various BI data provenances.

Furthermore, a BI analysis provenance is a metadata set
that describes what processing in a brain dataset has
been carried out, including what analytic tasks were
performed, what experimental data were used, what
data features were extracted, and so on. For providing a
general conceptual schema for BI analysis provenances,
the experiment, data and analysis dimensions are con-
nected by the following two relations:

• has-origin-data. It is between analytic process con-
cepts in an analysis dimension and the correspond-
ing data concepts in a data dimension, which de-
scribes input data of analytic processes.

• has-result-data. It is between analytic process con-
cepts in an analysis dimension and the correspond-
ing data concepts in a data dimension, which de-
scribes results of analytic processes.

By using the above two relations, data analysis re-
lated concepts are connected to the corresponding data
concepts. They form a general conceptual schema for
describing what processing in a brain dataset has been
carried out. We can also extract specific analysis related
concepts and data concepts, as well as the correspond-
ing relations among them, to obtain various conceptual
schemata of BI analysis provenances. Various BI anal-
ysis provenances can also be constructed by creating
and integrating instances of corresponding concepts and
relations.

By using BI provenances as a bridge, the Data-Brain
and various brain data can be integrated to construct a
brain data center, as shown in Fig. 8. Such a brain data
center is a brain data and knowledge base and stores
original data, derived data and data features, as well as
multi-aspect and multi-level of data related information
and knowledge, for meeting various data requests of a
systematic BI study.

4.8 The Evaluation of Data-Brain and Its Evolution
The evaluation of Data-Brain is an important issue of
Data-Brain modeling. The existing approaches of on-
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Fig. 8. Data-Brain, BI provenances and brain data are integrated to construct a brain data center.

tology evaluation can be divided into four categories:
golden standard, application-based, data-driven, and as-
sessment by humans [4]. However, as stated above, the
main purpose of Data-Brain modeling is not to develop a
multi-domain ontology about brain data but to construct
a conceptual model of brain data to integrate data,
information and knowledge for various data requests
of a systematic BI study. Thus, the evaluation of Data-
Brain can only depend on the domain experts and an
application based approach. We evaluate the Data-Brain
based on the responding levels of various data requests
which are coming from different aspects of a systematic
BI study and sent by researchers or research supporting
systems.

The evolution of Data-Brain is another important issue
of Data-Brain modeling. In order to enrich and update
the Data-Brain constantly, we need to popularize the
above BI methodology based modeling approach in the
global BI research community. A graphical modeling
language and the corresponding modeling tools need to
be developed to simplify and guide the whole modeling
process. Similar work has been done in Geoinformat-
ics [39] and Bioinformatics [12]. We also completed some
primary work [6].

However, it is impossible to develop a powerful Data-
Brain which can drive the systematic BI research ap-
proach, only depending on the manual and small-scale
modeling work in the BI community. Existing resources
and experiments should be included in the Data-Brain by
some artful semi-automatic approaches. Related work is
involved with the following two issues:

• how experiments encoded in existing databases or
ontological resources can be reused, and

• how experiments and the knowledge described in
scientific papers can be uploaded/absorbed in the
Data-Brain.

For the first issue, the core is ontology mapping [9],
[22] including ontology integration [36] and align-
ment [19] because the experiments encoded in public
brain data repositories, such as fMRI data center [61],

can be “translated” as ontological resources by database
based [47] or Web based [1], [2] ontology learning
technologies. Aiming at some special ontological re-
sources which describe the small-scale and special do-
main knowledge, such as NEMO [11] and brain cortex
anatomy ontology [20], the Data-Brain can directly im-
port them as sub-models or refer to them as external
knowledge sources by ontology alignment. Aiming at
some general or temporary ontological resources, es-
pecially the ontological resources “translated” from the
experiments in databases, some technologies of ontol-
ogy mapping and integration, such as assessing concept
similarity [17], need to be adopted. This is an issue for
ontology mapping between an integrated global ontol-
ogy and local ontologies [9], and can be supported by
some existing tools [3], [10].

For the second issue, the core is ontology learning
from texts, involved with concept extraction [30], [32], re-
lation discovery (taxonomic relation discovery [15], [31]
and non-taxonomic relation discovery [27], [28]), and
axiom acquisition [38]. In the Data-Brain modeling, the
study on ontology learning from texts mainly focuses on
concept extraction and non-taxonomic relation discovery,
just like the studies in other life science domains [25],
[48]. Though recent technologies on taxonomic relation
discovery, such as probabilistic taxonomy learning [13],
have been applied in various ontology learning tasks
successfully, they can only play a secondary role on
defining the concept hierarchy of dimension for the
Data-Brain modeling. As stated above, the Data-Brain
modeling is not to develop a multi-domain ontology
about brain data but to construct a conceptual model
of brain data for systematic BI study. Thus, the concept
hierarchy of dimension should be defined based on
viewpoints of systematic BI methodology, as stated in
the above BI methodology based modeling approach.

5 ILLUSTRATIVE EXAMPLES

In this section, two realistic use cases are used to illus-
trate the usefulness of the Data-Brain for various data
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TABLE 1
Experimental Data Stored in the Brain Data Center

ExpGroupID Description
EG2 30 fMRI experiments for the sentential inductive

strength judgment
EG3 22 fMRI experiments for the sentential induction

with multi-level preconditions
EG6 14 fMRI experiments for the figural induction

EG7-1 11 ERP experiments for the reversed triangle
induction

EG7-2 30 fMRI experiments for the reversed triangle
induction

EG8 14 ERP experiments for the simultaneously pre-
sented reversed triangle induction

EG9 14 ERP experiments for the sentential inductive
strength judgment

EG10 16 ERP supplementary experiments for the sen-
tential inductive strength judgment

requests of a systematic BI study.
Experiments are based on a prototype system of brain

data center which stores the human inductive reasoning
centric BI experimental data. As shown in Table 1, these
data were obtained from 151 subjects in 8 groups of
experiments. The corresponding analytical results shown
in Table 2 were also stored into this data center. As-
sisted by domain experts, a Data-Brain prototype was
constructed by the BI methodology based modeling
approach as stated in Section 4, which includes 119
concepts and 36 relations.

The function dimension is very simply. It includes
the cognitive function concepts with respect to human
inductive reasoning and its direct/indirect sub-classes.
Furthermore, since many same data features are ob-
tained from the numeric induction tasks and the com-
putation tasks [33], we added the relation “related-to-in-
function” between the concept “Numeric Induction” and
the concept “Computation”. Similarly, we also added
the relation “includes-in-function” between the concept
“Induction” and the concept “Memory”. Based on this
function dimension, as shown in Fig. 9, a human induc-
tive reasoning centric conceptual view can be extracted
by Algorithm 1. Although it is quite simple, this con-
ceptual view provides a comprehensive view of human
inductive reasoning centric BI investigations and can be
regarded as a user interface to access the brain data
center.

The information coming from related experimental
studies and data analysis, including subject informa-
tion, experimental process information, scanning pro-
tocol information, analytical parameters, etc., was used
to construct various RDF (Resource Description Frame-
work) [24] based BI provenances by a Data-Brain based
approach [8]. Furthermore, the OWL based Data-Brain
and RDF based BI provenances were combined as a
knowledge-base of BI data to respond SPARQL (Simple
Protocol and RDF Query Language) [37] queries for
various data requests of a systematic BI study as stated

TABLE 2
Analytical Results Stored in the Brain Data Center

ID Name Data Feature
AP1 The data analysis for the fMRI

dataset of EG2
23 Activations

AP2 The data analysis for the fMRI
dataset of EG3

15 Activations

AP3 The data analysis for the fMRI
dataset of EG6

86 Activations

AP4 The data analysis for the ERP
dataset of EG7-1

10 ERP components

AP5 The data analysis for the fMRI
dataset of EG7-2

15 Activations

AP6 The data analysis for the ERP
dataset of EG8

14 ERP components

AP7 The data analysis for the ERP
dataset of EG9

12 ERP components

AP8 The data analysis for the supple-
mentary ERP dataset of EG10

20 ERP components

in Section 2.2. Because of the limitation of space, we only
introduce two typical use cases as follows.

Use case 1. For uncovering the principles and mecha-
nisms of HIPS, BI often focuses on the information about
activated brain areas during human information process-
ing courses, including which brain areas are activated,
what the size of activated areas are, etc. Thus, during
studies of human sentential induction, researchers often
need to know what brain areas are activated in the infor-
mation processing courses of human sentential induction
based on the existing experimental data and analytical
results in the current brain data center. The relevant
data request can be described as: “get all of activations
(8-9) of sentential induction tasks (6-7), as well as the
corresponding experimental groups and experimental
tasks (1-5), which are located in the frontal lobe (10-
11) and whose sizes are larger than 100 voxels (12-13)”
(note: the numbers appearing in parenthesis refer to the
line numbers within the query Q1). Figure 10 is the
corresponding query expression expressed in SPARQL
language.

Fig. 10. The SPARQL query Q1.

As shown in Table 3, the results of query Q1 can be
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Fig. 9. View extraction for an inductive reasoning centric conceptual view. The light-color words, such as “Problem-
Solving” and “emotion”, represent some cognitive functions which have potential functional relationships with
“Induction”, but the relationships cannot be proved by the data and analytical results in the brain data center.

TABLE 3
Results of Query Q1

ExpGroupID ExpTaskID DataFeatureURI
EG2 ST02 ../Activation/A16
EG2 ST02 ../Activation/A17
EG2 ST02 ../Activation/A18
EG2 ST02 ../Activation/A19
EG2 ST03 ../Activation/A27

TABLE 4
The Detail Information of Activations Found by Q1

ID Location nox Coordinate T
A16 Left Superior or Medial

Frontal Gyrus (BA8)
823 (-12.0,32.0,48.0) 5.56

A17 Left Superior or Medial
Frontal Gyrus (BA9)

823 (-8.0,50.0, 40.0) 4.01

A18 Left ACC or Medial
Frontal Gyrus (BA32/9)

128 (-8.0,38.0,22.0) 4.4

A19 Left Middle Frontal
Gyrus (BA10/11)

169 (-38.0,50.0,-6.0) 3.97

A27 Right Inferior Frontal
Gyrus (BA45/46)

237 (50.0,34.0,8.0) 5.07

easily reformatted into a table where the column names
are the variables of the SELECT section of the query. We
can see that five activations are included in this table.
This means that, based on the experimental data and
analytical results stored in the brain data center, five
activations in frontal lobe whose sizes are larger than
100 voxels are found during the information processing
course of human sentential induction.

Table 4 gives the detail information of the activations
in Table 3. Note that, in Q1 only the anatomical area
Frontal-Lobe was initially specified (line 11). However,
because we performed the Q1 on the inference model
which is obtained by reasoning on the knowledge-base
using the common-sense rule “any data feature which is
located in a Brain-Area1, also is located in any Brain-Area
that includes Brain-Area1”, the system can infer that the
A19 located in Left Middle Frontal Gyrus and A27 located

in Right Inferior Frontal Gyrus are also located in Frontal-
Lobe and so returns them. Similarly, using the common-
sense rule “any data feature which is located in a Brain-
Area1, also is located in any Brain-Area that Brain-Area1

may-be”, the system returns the activations A16,A17 and
A18. These results cannot be obtained by the traditional
relational database based data/metadata bases. This is
the reason that the Data-Brain and BI provenances are
constructed by using OWL and RDF.

Use case 2. Systematic investigation of human think-
ing centric cognitive functions is an important issue of
BI methodology. For example, a researcher focusing on
human induction also needs to take into account the re-
lationships between induction and other related human
cognitive functions. The conceptual view shown in Fig. 9
hints that induction is functionally related to computa-
tion based on the data and analytical results in the brain
data center. Thus, researchers often want to know what
relationships exist between induction and computation.
The relevant data request can be described as: “get all of
similar (13-14) data features (7-12) which are extracted
from the data of both induction (1-3) and computation
(4-6)” (note: the numbers appearing in parenthesis refer
to the line numbers within the query Q2). Figure 11
shows the corresponding query expression.

Fig. 11. The SPARQL query Q2.
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TABLE 5
Results of Query Q2

ExpTaskName1 Feat1 ExpTaskName2 Feat2
The reversed trian-
gle inductive task
(ERP)

EC15 The reversed trian-
gle computing task
(ERP)

EC16

The reversed trian-
gle inductive task
(ERP)

EC17 The reversed trian-
gle computing task
(ERP)

EC18

The reversed trian-
gle inductive task
(ERP)

EC19 The reversed trian-
gle computing task
(ERP)

EC20

The reversed trian-
gle inductive task
(ERP)

EC21 The reversed trian-
gle computing task
(ERP)

EC22

The simultaneously
presented reversed
triangle inductive
task

EC11 The reversed trian-
gle computing task
(ERP)

EC22

The simultaneously
presented reversed
triangle inductive
task

EC12 The reversed trian-
gle computing task
(ERP)

EC24

The congruent task
for sentential induc-
tive strength judg-
ment

EC33 The reversed trian-
gle computing task
(ERP)

EC24

... ... ... ...

TABLE 6
The Detail Information of Data Features Found by Q2

ID Name Information processing Course
EC15 the posterior P100 number recognition
EC16 the posterior P100 number recognition
EC17 the frontal P300 understanding of tasks in working

memory
EC18 the frontal P300 understanding of tasks in working

memory
EC19 the posterior P300 understanding of tasks in working

memory
EC20 the posterior P300 understanding of tasks in working

memory
... ... ...

The results of query Q2 are shown in Table 5. Table 6
gives the detail information of the found data features.
For different objectives, researchers often identify the
“similar” data features according to different rules. In
Q2, we adopt a kind of qualitative rule (line 13-14),
i.e., “all of data features which have a same name, are
the similar data features”2. The nine results in Table 5
show that the analytical results coming from three types
of inductive tasks have some similar ERP components

2. It is difficult to quantitatively compare the analytical results
coming from different ERP experiments because the huge differences
on experimental designs and subjects. Researchers often adopt some
qualitative methods/rules. During the ERP data analysis, researchers
need to consider multiple factors, including time, location, amplitude,
information processing course, etc., for naming ERP components.
Thus, the name of ERP components is a kind of useful feature for
qualitatively comparing the analytical results belonging to different
experiments, as well as identifying the “similar” ERP components.

with the results of a reversed triangle computing task.
These ERP components provide a useful evidence for
the relation “related-to-in-function” between the concept
“Numeric Induction” and the concept “Computation”.
They are important information for further studies.
Other qualitative and quantitative rules for identifying
the similar data features can be realized by queries
similar to Q2. We can also use the common-sense rules
stated above to get more results based on the part-whole
relationships among brain areas.

Furthermore, only the general concept Induction (2)
was initially indicated in Q2. However, since in the
function dimension of the Data-Brain Sentential Induction,
Numeric Induction and Figural Induction are subsumed
by Induction, the system can infer that the sentential,
numeric and figural inductions are also induction and
integrate their data as data sources for finding relevant
data features.

In summary, these two use cases illustrate that, the BI
methodology based domain-driven modeling approach
makes it possible to integrate the necessary data, in-
formation and knowledge based on a Data-Brain for
responding various data requests of a systematic BI
study. While a concise data request is requested, the sys-
tem, thanks to our conceptual model of brain data, i.e.,
the Data-Brain, and Data-Brain based BI provenances,
automatically broadens the search to find relevant data,
information and knowledge for such a specific require-
ment. This shows the usefulness of the proposed Data-
Brain modeling approach.

6 CONCLUSIONS

The Data-Brain modeling is a core issue of BI study.
For supporting systematic BI study, we proposed a new
conceptual model of brain data, called Data-Brain, which
is with multiple conceptual views and its own four di-
mensions corresponding to the four aspects of systematic
BI methodology. Such a Data-Brain can be constructed by
a BI methodology based ontological modeling approach.
Two realistic use cases illustrated how the Data-Brain
can be used for various data requests which are coming
from different aspects of a systematic BI study. This
shows the usefulness of the proposed modeling method
by an application based approach. As the core of BI
data cycle system, the Data-Brain represents a radically
new ways of storing and sharing data and knowledge,
as well as enables high speed, distributed, large-scale,
multi-aspect analysis and computation on the Wisdom
Web and knowledge grids. It plays a central role in BI
study by providing the following functions:

• A domain-driven conceptual model of human brain
data, which explicitly describes the relationships
among multiple human brain data, with respect
to all major aspects and capabilities of a domain
of HIPS studies, for supporting systematic human
brain data management, integration and sharing;
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• A knowledge-base of systematic BI study, which
integrates brain data related multi-aspect domain
knowledge to support various knowledge driven
data applications and to provide valuable knowl-
edge sources for solving special domain problems;

• A global view and knowledge framework for con-
structing a BI data cycle system, on which various
brain data sources and research supporting func-
tions are deployed as agents to support the whole
BI methodology based systematic BI study.
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